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VARIABLE RESOLUTION UNCERTAINTY
EXPERT SYSTEM FOR DIGITAL
BATHYMETRY DATABASE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority based on
U.S. Provisional Patent Application No. 61/333,795 filed on
May 12, 2010, the entirety of which is hereby incorporated by
reference into the present application.

BACKGROUND

Devices and methods disclosed herein relate generally to
data accuracy, and more specifically, to computing uncer-
tainty for gridded data sets, for example, for historical gridded
bathymetry data.

Estimates of uncertainty are becoming a requirement of
oceanographic and acoustic models that use bathymetry. Fur-
ther, bathymetry fusion algorithms that fuse disparate data
sets into a single bathymetry surface can require uncertainty
estimates of the input data. Still further, International Hydro-
graphic Organization (IHO) standards prescribe that uncer-
tainty be specified for all hydrographic and bathymetric prod-
ucts, with differing level of uncertainty tolerances depending
on safety requirements. Ultimately, uncertainty in the
bathymetry layer can be used for navigation safety for surface
ships and submarine operations. Jakobsson et al., On the
effect of random errors in gridded bathymetric compilations,
Journal of Geophysical Research-Solid Earth, 107: Article
2358, 2002, estimate error on historic data sets based on
Monte Carlo simulations where the two-dimensional position
of the original data points, the soundings, are randomly per-
turbed using a normally distributed random number generator
(RNG) illustrated in FIG. 1 (PRIOR ART), showing the estab-
lished Monte Carlo procedure 100 as given originally by
Jakobsson. FIG. 2 (PRIOR ART) shows a revised established
Monte Carlo procedure 150, revised to match the notation and
flow chart conventions used herein, where the number of
soundings is J, the number of surveys is K, the horizontal and
vertical uncertainties of the K* survey are H, and V, the
number of Monte Carlo simulations is N, and each loop is
denoted by. For the K survey, the RNG perturbs the position
data ~N (0,V?). The notation ~ N (0,V.?) means that the
quantity follows a normal, or Gaussian, probability distribu-
tion with mean 0 and variance V2. If the output grids have 1
grid points, the gridded bathymetry surface is constructed 151
from a conventional minimum curvature spline interpolator
for each n” iteration, resulting in N different interpolated
bathymetry surfaces 153. The gridded uncertainty estimate is
the standard deviation 155 of the N surfaces. Navigation error
and the bottom slope can predominantly influence the bathy-
metric uncertainty estimated from this method. This proce-
dure can be computationally intensive and requires the use of
original soundings data.

What are needed are a system and method that can estimate
uncertainty in the interpolation/extrapolation of bathymetry
data. What are further needed are a system and method that
provide a statistically rigorous means for estimation of uncer-
tainty for areas of the seafloor not covered by dedicated
surveys or that fall in between point measurement locations,
and that are computationally efficient and do not require the
use of original soundings data.

SUMMARY

To address the above-stated needs, the present teachings
provide a system and method for estimating uncertainty

10
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2

based on a Bayesian network (BN). According to Heckerman,
A Tutorial on Learning with Bayesian Networks,
MICROSOFT® Technical Report, MSR-TR-95-06, March
1995 (revised November 1996), “a Bayesian network is a
graphical model that encodes probabilistic relationships
among variables of interest.” The BN can accommodate miss-
ing data and can learn causal relationships, thus it can include
probabilistic semantics. A BN can encode uncertain expert
knowledge in expert systems.

The present teachings can provide a computationally effi-
cient method for estimating bathymetric uncertainty for his-
torical gridded bathymetry data sets. Uncertainty estimates
are needed when data are stored in the Bathymetric Attributed
Grid files, which require both bathymetry and uncertainty. An
exemplary embodiment of the present teachings, the Digital
Bathymetry Data Base, Variable Resolution Uncertainty
Expert System (DUES), is based on a BN to provide a com-
putationally efficient method for determining uncertainty in,
for example, but not limited to, the Navy’s Digital Bathymet-
ric Data Base-Variable Resolution (DBDB-V). In the present
teachings, the Monte Carlo technique can be used on repre-
sentative sets of soundings data to obtain the conditional
probability densities (CPDs) necessary for statistical infer-
ence. Causal relationships of navigation error and bottom
slope to bathymetric uncertainty can be quantified by CPD’s.

The computer-based system for estimating uncertainty can
include, but is not limited to including, an automated condi-
tional probability density processor computing conditional
probability densities of bathymetric uncertainty due to navi-
gation error and bottom slope using a Monte Carlo technique
on representative sets of soundings data from the bathymetry
database. The system can also include an automated BN
trainer processor using the Monte Carlo results to train the BN
to provide the causal relationships of navigation error and
bottom slope to bathymetric uncertainty, producing a histo-
gram of bathymetric uncertainty from the Bayesian Network
of the uncertainty for an area similar to the training set area,
and an automated uncertainty estimator estimating the uncer-
tainty based on the histogram produced by the Bayesian Net-
work, providing the uncertainty estimates to an upgraded
bathymetry database.

The method for estimating uncertainty can include, but is
not limited to including, the steps of obtaining conditional
probability densities of bathymetric uncertainty due to navi-
gation error and bottom slope using a Monte Carlo technique
on representative sets of soundings data from the bathymetry
database, using the Monte Carlo results to train the BN to
provide the causal relationships of navigation error and bot-
tom slope to bathymetric uncertainty, producing a histogram
of'bathymetric uncertainty from the Bayesian Network of the
uncertainty for an area with similar bottom topography to the
training set area, and estimating the uncertainty based on the
histogram produced by the Bayesian Network. Similarity is
quantified, for example, but not limited to, by statistical
hypothesis testing of the distributions of the bottom slopes in
one area versus the training area such that the null hypothesis
cannot be rejected due to lack of evidence for rejection at a
99% percentile confidence level. The expert system of the
present teachings is fundamentally different from established
Monte Carlo procedure because statistical inference is used to
estimate uncertainty whereas Monte Carlo uses standard
deviation from simulations, and while Monte Carlo simula-
tions can be used for training, Monte Carlo simulation is not
the means by which the uncertainties are estimated. Further,
original soundings are not required to estimate the uncer-
tainty.
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BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1(PRIOR ART) is a graphical flowchart of the method
of calculating uncertainty of the prior art;

FIG. 2 (PRIOR ART) is a flowchart of the method of
calculating uncertainty of the prior art revised to indicate
notation used herein;

FIG. 3 is a schematic block diagram of the creation and
usage of CPTs generated from a Monte Carlo process;

FIG. 41s a schematic block diagram of an exemplary uncer-
tainty expert system;

FIG. 51s a graphical user interface product of BN topology;

FIG. 6 is a table of horizontal error categories;

FIG. 7 is a schematic block diagram of the BN training
process of the present embodiment;

FIG. 8 is a schematic block diagram of the present embodi-
ment in the context of a system that queries navigation and
bathymetry databases and populates a bathymetry database
with uncertainties;

FIG. 9 is a flowchart of the process of Monte Carlo simu-
lations of the present embodiment introduced in FIG. 7;

FIG. 10 is a flowchart of the process of calculating standard
deviations of the present embodiment introduced in FIG. 7;

FIG. 11 is flowchart of the BN programming of the present
embodiment introduced in FIG. 7; and

FIG. 12 is a schematic block diagram of the system of the
present embodiment.

DETAILED DESCRIPTION

The problems set forth above as well as further and other
problems are solved by the present teachings. These solutions
and other advantages are achieved by the various embodi-
ments of the teachings described herein below.

In the present embodiment, an established Monte Carlo
technique can be used on representative sets of soundings
data to obtain the CPD’s necessary for the statistical infer-
ence. The BN can then produce a histogram of this uncer-
tainty estimate for an area given the navigation errors used to
survey the region and bottoms slopes that are present. A final
estimate of uncertainty can be calculated by combining a
variance estimate, such as, for example, but not limited to,
mean plus one standard deviation or a quantile, from the BN’s
output histogram with the vertical error, V., under the
assumption of statistical independence between the two. The
statistic can be user-supplied.

Referring now to FIG. 3, a BN adaptation can exploit the
similarity of how errors propagate. Nodes A, B, and C are
parents 25 of child node Y 21, meaning that A, B and C
collectively cause effect Y. In this case, conditional probabil-
ity table (CPT) 23 was created (i.e. the BN was trained) from
Monte Carlo simulations. Causal relationships between, for
example, but not limited to, navigation error and bottom slope
to bathymetric uncertainty can be defined. The Monte Carlo
technique can be used on sample data to train the BN and
generate CPDs. Conditional probabilities can link parent
nodes (A, B, C, etc.) 25to child nodeY 21. CPT’s 23 can store
conditional probabilities. Parent nodes 25 are histograms of
their variables. Child histogram is a weighted sum of the
conditional probabilities.

Referring now to FIG. 4, the conceptual flow 200 of an
exemplary uncertainty expert system is shown. Distribution
of navigation errors 201 and bottom slope 203, both at the i”*
output point, are supplied to Bayes network 33. The uncer-
tainty component from navigation error and bottom slope is
estimated for each i point on output grid 205 with x total
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4

points through statistical inference of Bayes network 33.
Interpolated longitudes and latitudes are given by lon' and lat'.

Referring now to FIGS. 5 and 6, BN topology is shown as
displayed by, for example, but not limited to, NETICA®
software graphical user interface (FIG. 5) for training a BN
and tabulated horizontal error categories 31 (FIG. 7) are
shown as used in an exemplary BN. The process for training
a BN by the Monte Carlo technique can include, but is not
limited to including, the steps of tabulating applicable data,
for example, horizontal errors 35, performing the Monte
Carlo procedure on error categories 31 (FIG. 6), creating a 2D
histogram 36 of possible uncertainties for a CPT, and repeat-
ing for different training areas. Horizontal errors 35 (FIG. 5)
follow navigation errors. Bottom gradient 39 (FIG. 5) and
uncertainty estimate 41 (FIG. 5) nodes follow a logarithmic
binning scheme.

Referring now to FIG. 7, a high level view of an exemplary
BN training process is shown. The figure illustrates compu-
tation of the standard deviation as modified by the present
teachings and use of these results to construct the CPTs for the
BN. Shown is the process of assessing uncertainty and train-
ing a Bayes network from Monte Carlo simulations. The
process includes, but is not limited to, the steps of perturbing
51 sounding positions “n” times, where there is a Gaussian
distribution of perturbed positions and where horizontal/
navigation positioning error is 1 s of the Gaussian perturba-
tion, obtaining 53 the standard deviation of the “n” bathym-
etry layers, increasing horizontal error by a predefined step
size and repeating, and creating 55 CPT of standard devia-
tions with horizontal error and slope using bivariate histo-
gram at the end of the simulations.

Referring now to FIG. 8, an exemplary implementation of
the present teachings is shown in which the BN is integrated
into larger system 300, for example, the DUES system. First,
a region of interest for an uncertainty estimate is defined,
followed by a query 303 of, for example, but not limited to,
available navigation 301 and bathymetry data 305 for the
area. The query can be made manually or automatically. Inthe
present embodiment, metadata codes 307, which indicate
survey era and platform used, are read from the navigation
data 301 to obtain the types of navigation and sonar systems
used for the track lines in the area. The fractional lengths of
the track lines with like error, that is, errors in the same error
category, are then calculated. The sums of all track lengths
with a like error divided by the total of all track lengths
become the weights for the horizontal error 309 node for BN
313. The present embodiment extracts bathymetry data 305
from the same area to obtain the magnitude of the bottom
gradient and “real-bit” flags 311 at each grid point; the latter
indicates if the grid point is calculated from actual soundings
(real-bit flag=1) or if it is determined purely from interpola-
tion (real-bit flag=0). The present embodiment loops through
each grid point, assigns bottom gradient 315 to the appropri-
ate bin of the BN’s Bottom Gradient node, and extracts the
resultant histogram. Calculation of a user-specified quantile
(median, 68.7" percentile, etc.) or other statistic (mean, mean
plus one standard deviation, etc.) for this histogram provides
the intermediate uncertainty 317. The final uncertainty esti-
mate is obtained by first adding the square of the intermediate
uncertainty 317 to the square of the vertical error estimate
319. The square root of the sum is then the final uncertainty
estimate at that grid point if real-bit flag=1. If real-bit flag=0,
the square root is multiplied by a user-defined coefficient to
magnify the uncertainty estimate 317 to account for higher
uncertainty in purely interpolated values. The present
embodiment finally combines the gridded bathymetry 321
and uncertainty layers into database 325 used to populate 323,
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for example, an upgraded DBDB-V database. Vertical error
319 can be estimated from a large number of factors, includ-
ing uncertainties of the sonar, sound speed profile, ship posi-
tioning vertically, ship pitch and roll, etc.

Referring now primarily to FIG. 9, a method 350 for Monte
Carlo simulations 51 (FIG. 7) can include, but is not limited to
including, the steps of calculating 351 a one-time non-per-
turbed bathymetry to be used for later calculations of bottom
slope. For this unperturbed grid, matrix S0 355 holds the
interpolated longitude (Lon') and latitude (Lat') and depths
(70" 353. The bold face means that the quantity is a vector or
matrix. In the present embodiment, there are M different
horizontal error categories for which the BN needs to be
trained (loop 367). Method 350 can include the step of obtain-
ing 369 the m™ horizontal error, and, for each m™ horizontal
uncertainty H,, category (m=1, .. ., M), creating files 371, for
example, but not limited to, in ASCII format, for the longi-
tude, latitude, depth, and horizontal uncertainty H,, to be used
as input files for the Monte Carlo simulations. In the present
embodiment, for each category, there are N simulations (loop
361) in which the locations 373 of the sounding points (or
gridded points acting as sounding points) are perturbed from
the original position (in meters after conversion 365 to uni-
versal transverse mercator (UTM) projection and specifica-
tion of a UTM origin in the grid) by amounts AX, in the
east-west direction and AY,, in the north-south direction,
incrementing 363 i through each iteration of loop 367. Posi-
tional perturbations ~N(0, H, ) are provided by Gaussian
pseudorandom number generator. For each n” simulation
(n=1, ...,N) (loop 359), method 350 can include the step of
interpolating 377 the data points 375 to provide bathymetry
surface, 7, Interpolated positions 379 are then converted
from UTM to the interpolated longitude and latitude. The
matrix S, ' is the vector of Lon', Lat', and Z,,,'. Method 350
can include the step of storing each S, ' to file 357, for
example, but not limited to, an ASCII text file, with the
navigation uncertainty category, m, and the Monte Carlo loop
number, n, stored in the file name in file 357. The interpola-
tion algorithm can be, but is not limited to being, a windowed
linear smoothing technique documented by Plantet al., I. A.,
Analysis of the scale of errors in nearshore bathymetric data,
Marine Geology, 191, pp. 71-86, 2002.

In the present embodiment, N=100 Monte Carlo iterations
are performed for each m” set of simulations; the set of one
hundred Monte Carlo simulations are then repeated M times
for each horizontal error category in FIG. 5 in order to fully
populate the CPT of the BN. In the present embodiment, each
sounding is assumed to have the same probability distribution
of horizontal error so that a statistical distribution for bathy-
metric uncertainty for a range of horizontal errors can be
obtained. The actual data are assumed to have the horizontal
errors in order to associate horizontal errors and slope to an
intermediate uncertainty.

Referring now to FIG. 10, after completion of the Monte
Carlo simulations 51 (FIG. 7), method 400 for computing 53
(FIG. 7) the gridded standard deviation of the bathymetry can
include the steps of, for each m™ horizontal uncertainty cat-
egory (loop 403), obtaining 405 N Monte Carlo runs for
horizontal error H,, and computing 411 o,,', at each i’ output
grid point (loop 409) from the N bathymetry grids. Method
400 can also include the step of calculating 407 the gridded
bottom slope from the unperturbed bathymetry (S,) file 401
using standard methodologies, for example, but not limited
to, those in Zhou and Liu, Error Analysis on Grid-Based
Slope and Aspect Algorithms, Photogrammetric Engineering
& Remote Sensing, Vol. 70, No. 8, pp. 957-962, August 2004,
with UTM positions and linear extrapolation of the compu-
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tational edges. Method 400 can include the step of storing the
gridded standard deviation 417 and bottom slopes 413 to files
415, for example, but not limited to, ASCII files 419 which
can contain the interpolated longitude, latitude, and bathym-
etry, the Monte Carlo standard deviation, and the slope, given
by matrix E,,,.

Referring now to FIG. 11, method 450 for Bayes net train-
ing 55 (FIG. 7) can include, but is not limited to including, the
step of, for each m horizontal error (loop 451), accessing 453
Monte Carlo uncertainties and bathymetric slopes from the
standard deviation file 357 (FIG. 9) for the first horizontal
error category, H,. Method 450 can include the step of com-
puting 455, using logarithmic binning schemes for both the
bottom slopes and bathymetry uncertainties, a bivariate his-
togram (i.e., three-dimensional histogram) using, for
example, but not limited to, the “hist3” function of the MAT-
LAB® Statistics Toolbox, with slopes (let there be g, . .., g,
slope bins, given by vector g) and intermediate bathymetry
uncertainty (let there be s,, . . . , s, uncertainty bins, given by
vector s), respectively, indexing the row and column bins of
the bivariate histogram. Method 450 can include the steps of,
when m=1 (loop 461), normalizing and writing 459 the his-
togram to file 463, for example, but not limited to, an ASCII
file, incrementing 457 a PCT index, and repeating steps 451,
453, 455, and 459 for subsequent horizontal uncertainties 35
(FIG. 5). Method 450 can further include the step of, when
m>1 (loop 461), appending 465 the resultant normalized
bivariate histograms to file 463. Method 450 can still further
include the step of opening 467 Bayesian network * .neta file
469 in a NETICA® GUI, and displaying the CPT for the
“Uncertainty Estimate” node. The CPT can, for example, be
copied from the ASCII file into a spreadsheet-like data dis-
play for the CPT in the GUI. The CPT can be already arranged
to have the same stacked structure as the file 463.

Referring now to FIG. 12, system 500 for estimating uncer-
tainty can include, but is not limited to including, conditional
probability density processor 501 obtaining conditional prob-
ability densities 503 of bathymetric uncertainty due to navi-
gation error and bottom slope using a Monte Carlo technique
on representative sets of soundings data from bathymetry
database 521. System 500 can also include BN trainer pro-
cessor 505 using the Monte Carlo results to train BN 513 to
provide the causal relationships of navigation error and bot-
tom slope to bathymetric uncertainty, producing histogram
507 of bathymetric uncertainty from BN 513 of the uncer-
tainty for an area similar to the training set area, and uncer-
tainty estimator 509 estimating the uncertainty based on his-
togram 507 produced by BN 513, providing uncertainty
estimates 517 to updated bathymetry database 519.

The present embodiment is directed, in part, to software for
accomplishing the methods discussed herein, and computer
readable media storing software for accomplishing these
methods. The various modules described herein can be
accomplished on the same CPU, or can be accomplished on
different computers. In compliance with the statute, the
present embodiment has been described in language more or
less specific as to structural and methodical features. It is to be
understood, however, that the present embodiment is not lim-
ited to the specific features shown and described, since the
means herein disclosed comprise preferred forms of putting
the present embodiment into effect.

Referring again primarily to FIGS. 4, 7, 8, 9, 10, and 11,
methods 200, 250, 300, 350, 400, and 450 can be, in whole or
in part, implemented electronically. Signals representing
actions taken by elements of apparatus 500 (FIG. 12) and
other disclosed embodiments can travel over at least one live
communications network. Control and data information can
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be electronically executed and s